陈建新
职称职务:元光学者特聘教授,博士生导师,国家一流专业应用化学系主任
电子邮箱:chjx2000@126.com
教育背景:
2006.9-2008.10 德国马丁路德大学 客座研究
2007.1-2007.4 德国纽伦堡大学 客座研究
2005 - 2009 天津大学 博士后
2002 - 2005 天津大学 博 士
1998 - 2001 天津大学 硕 士
1989– 1993 郑州大学 学 士
工作简历:
现为先进功能分离与水处理技术创新团队负责人。大学毕业化工部天津化工研究院工作,先后十年获天津大学硕士、博士、博士后;河北省高校百名优秀创新人才;2006.9-2008.10 在德国纽伦堡大学和马丁路德大学任客座研究员。现为河北工大元光学者特聘教授,博士生导师,挂职中海油天津化工研究设计院副总工程师。先后担任海洋资源与环境系和国家一流专业应用化学系两个系主任、教育部海水利用中心功能分离与材料研究室主任。
学术兼职:
中海油天津化工研究设计院副总工程师(挂职);德国过程工程师协会会员,中国化工学会、中国颗粒学会会员、天津生态环境学会理事,河北省海洋学会理事;国家核心期刊《工业水处理》、《无机盐工业》编委;国家自然科学基金、国家留学基金、海洋协会、教育部、北京、天津、上海、重庆、浙江、江苏、广东、云南、黑龙江等多个省部市项目评审/会评专家。
研究领域:
(1)功能分离与材料,高选择性功能分离方法与材料精准构建和可控制备;
(2)水处理与精细化学品,环保型绿色水处理化学品的研究和开发;
(3)资源利用与环境保护,针对资源利用和环境保护开发先进的分离纯化技术。
主持项目:
序号 |
项目名称 |
项目来源 |
起止年月 |
1 |
多膜集成-蒸发/冷冻结晶耦合 系统开发 |
国家科技部,国家重点研究计划课题 |
2021.12- 2025.11 |
2 |
循环冷却水处理多功能药剂制备、外场协同增效及浓水回用的研究 |
国家自然科学基金委员会, 联合基金重点项目 |
2021.01- 2024.12 |
3 |
反应萃取结晶提取浓海水钾的基础研究 |
国家自然科学基金委员会,面上项目 |
2015.01- 2018.12 |
4 |
海水资源利用中钙的沉积特性及调控 |
国家自然科学基金委员会,面上项目 |
2013.01- 2016.12 |
5 |
甾体药物晶体结构设计及粒子尺寸的调控 |
国家自然科学基金委员会,面上项目 |
2007.01- 2009.12 |
6 |
海/卤水资源高效利用水质稳定处理的研究 |
河北省科技厅,河北省科技支撑项目 |
2016.01- 2019.12 |
奖励与荣誉:
河北省高校百名优秀创新人才;主持/参与氢化可的松、红霉素结晶、聚醚精制剂、静电植绒剂、铝溶胶、高效载体及吸附剂、清洗剂、絮凝剂、阻垢分散剂、缓蚀剂、杀生剂、粒状复合肥等多项成果得到推广应用,取得良好经济和社会效益。
代表性著作:
[1] Biomimetic construction of smart nanochannels in covalent organic framework membranes for efficient ion separation. Chemical Engineering Journal (IF 16.744),2024, 482:148907,
[2] Construction of IO-B-TiO2/In2O3 S-scheme heterojunction with photothermal effects and its highly efficient photocatalytic reduction of CO2 under full-spectrum light, Chemical Engineering Journal, 2024,479: 147618
[3] Anti-scaling covalent organic framework membranes with custom-tailored nanochannels for efficient lithium extraction,Chemical Engineering Journal (IF 16.744), 2023,462: 142112.
[4] Exploration of novel polyaspartic acid derivatives as fluorescent eco-friendly corrosion inhibitors for the carbon steel: Electrochemical, surface analysis (SEM/XPS) and theoretical calculation, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658, 130606
[5] Solid-liquid phase equilibrium for the hexamethylenetetramine–NH4Cl–H2O system: Solubility determination, model correlation and molecular simulation, Chemical Physics Letters,2023,140393
[6] JHydrophilic modification of PVDF membranes for oily water separation with enhanced anti-fouling performance[J]. Journal of Applied Polymer Science, 2023, 140: e53738.
[7] Improving cathode cleaning and current efficiency by regulating loose scale deposition in scale inhibitor-containing water. Separation and Purification Technology (IF 8.6). 2023, 323: 124494
[8] Integration of rare earth element stimulation, activated carbon adsorption and cell immobilization in ABE fermentation for promoting biobutanol production[J]. Chemical Engineering and Processing - Process Intensification, 2023, 184: 109306.
[9] Improving rhamnolipids production using fermentation-foam fractionation coupling system: cell immobilization and waste frying oil emulsion[J]. Bioprocess and Biosystems Engineering, 2023, 46: 1175-1194.
[10] Vertical interface coupling between crystalline α-Fe2O3 and carbon nitride nanosheets for efficient degradation of organic pollutants, Separation and Purification Technology, 2022, 290:120790.
[11] Cucurbit[n]uril-rotaxanes functionalized membranes with heterogeneous channel and regenerable surface for efficient and sustainable nanofiltration, Journal of Membrane Science, 2022, 659:120765.
[12] Bismuth gadolinium oxychloride with a remarkable visible‐light‐responsive O2 evolution activity promoted by iodine doping, Chemistry - A European Journal, 2022, 28(68):e202202004
[13] High performance polyamide crosslinked graphene oxide/ MPNs nanofiltration membrane for wastewater purification[J]. Separation and Purification Technology, 2022, 289: 120798.
[14] Heterogeneous Ti/PbO2-electro-Fenton degradation of aromatic methane dyes using industrial pyrite waste slag as catalyst[J]. Environmental Science and Pollution Research, 2022, 29:50218-50236.
[15] Crystal design of bismuth oxyiodide with highly exposed (110) facets on curved carbon nitride for the photocatalytic degradation of pollutants in wastewater. Frontiers of Chemical Science and Engineering, 2021.
[16] β-cyclodextrin carbon-based nanoparticles with a core-shell-shell structure for efficient adsorption of crystal violet and bisphenol A. Particuology. 2021, 62: 88-97.
[17] Preparation, Characterization, and Desolvation of 5‐Sulfoisophthalic Acid Sodium Salt Solvates, Chemical Engineering & Technology. 2022, 45: 1-10.
[18] Correction to: Heterogeneous Ti/PbO2-electro-Fenton degradation of aromatic methane dyes using industrial pyrite waste slag as catalyst. Environmental Science and Pollution Research. 2022, 29: 50237
[19] Anti-biofouling nanofiltration membrane constructed by in-situ photo-grafting bactericidal and hydrophilic polymers[J]. Journal of Membrane Science, 2021, 617: 118658.
[20] Performance Evaluation of Arginine Modified Polyepoxysuccinic Acid in Anti-scaling and Anti-corrosion Agent. Chemical Engineering & Technology. 2021, 44 ( 6) : 1131–1140
[21] A simple one-pot method to synthesize PVDF-PG KH792 membrane for separation of oil-in-water emulsions. Journal of Water Process Engineering. 2021,41: 101996
[22] Synthetic BiOBr/Bi2S3/CdS Crystalline Material and Its Degradation of Dye under Visible Light.. Crystals. 2021, 11(8): 899
[23] Enhanced desalination performance in asymmetric flow electrode capacitive deionization with nickel hexacyanoferrate and activated carbon electrodes, Desalination, 2021, 514:0-115172. SCIE
[24] Structural Simplification of Marine Natural Products: Discovery of Hamacanthin Derivatives Containing Indole and Piperazinone as Novel Antiviral and Anti-phytopathogenic-fungus Agents, Journal of Agricultural and Food Chemistry, 2021, 69(35):10093-10103. SCIE
[25] Antifouling nanofiltration membrane fabrication via surface assembling light-responsive and regenerable functional layer [J]. ACS Applied Materials & Interfaces, 2020, 12, 46: 52050–52058..
[26] Construction of high selectivity and antifouling nanofiltration membrane via incorporating macrocyclic molecules into active layer[J]. Journal of Membrane Science, 2020, 597 :117641.
[27] Enhanced degradation of dyes by Cu-Co-Ni nanoparticles loaded on amino-modified octahedral metal–organic framework. Journal of Alloys and Compounds, 2020,834:155106
[28] Evaluation of Scale and Corrosion Inhibition of Modified Polyaspartic Acid, Chemical Engineering & Technology, 2020, 43: 1048-1058
[29] Crystallization and purification of 4,4'-diaminodiphenyl ether. Chemical Engineering & Technology. 2020, 43(6): 1072–1078
[30] Modified chitosan-oligosaccharide and sodium silicate as efficient sustainable inhibitor for carbon steel against chloride-induced corrosion, Journal of Cleaner Production, 2019, 238: UNSP 117823
[31] The preparation of thin-walled multi-cavities β-cyclodextrin polymer and its static and dynamic properties for dyes removal, Journal of Environmental Management, 2019, 245: 105-113
[32] Corrosion inhibition performance of threonine-modified polyaspartic acid for carbon steel in simulated cooling water, Journal of Applied Polymer Science, 2019, 136: 47242
[33] A Green Multifunctional Antiscaling Inhibitor for Crystallization Control of Ca-Scale Crystals, Chemical Engineering & Technology, 2019, 42(2): 444-45
[34] Synthesis of a novel nanosilica-supported poly β-cyclodextrin sorbent and its properties for the removal of dyes from aqueous solution, Colloids and Surfaces A, 2018, 538: 808~817
[35] Triptycene based polyamide thin film composite membrane for high nanofiltration performance. [J]. Journal of the Taiwan Institute of Chemical Engineers. 2019,126: 101-119
[36] Syntheses of magnetic GO@melamine formaldehyde resin for dyes adsorption, Materials Research Express, 2019, 6(8): 086103
[37] Mineralization of Calcium Carbonate Induced by Egg Substrate and an Electric Field, Chemical Engineering & Technology, 2019, 42(7): 1525-1532.
[38] Controllable preparation of porous hollow carbon sphere@ZIF-8: Novel core-shell nanomaterial for Pb2+ adsorption[J]. Colloid and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568, 461-469
[39] Corrosion inhibition performance of threonine-modified polyaspartic acid for carbon steel in simulated cooling water[J]. Journal of Applied Polymer Science, 2019, 136(15): 47242.
[40] Enhanced corrosion inhibition performance of novel modified polyaspartic acid on carbon steel in HCl solution[J]. Journal Alloys and Compounds, 2019, 771:736-746.
[41] Adhesion of gypsum crystals to polymer membranes: Mechanisms and prediction[J]. Journal of Membrance Science, 2018, 566: 104-111.
[42] Influence of blending zwitterionic functionalized titanium nanotubes on flux and anti- fouling performance of polyamide nanofiltration membranes[J]. Journal of Materials Science, 2018,53:10499-105124.
[43] Zwitterionic functionalized "cage-like" porous organic frameworks for nanofiltration membrane with high efficiency water transport channels and anti-fouling property[J]. Journal of Membrance Science. 2018, 548: 194-202.
[44] Synthesis of a novel nanosilica-supported poly beta-cyclodextrin sorbent and its properties for the removal of dyes from aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538:808-817.
[45] Structurally stable graphene oxide-based nanofiltration membranes with bioadhesive polydopamine coating[J]. Applied Surface Science, 2018, 427: 1092-1098.
专利申请与授权情况:
[1] 陈建新; 豆丰; 韩健, 一种含苯并噻唑基团改性聚天冬氨酸荧光缓蚀剂的制备方法和应用,中国发明专利,2023-5-26, 中国, ZL202211121720
[2] 陈建新; 董志鹏; 韩健; 苏敏; 李银辉, 一种利用曼尼希反应改性γ-聚谷氨酸絮凝剂的合成方法及其应用, 2020.12.29, 中国, ZL 201810110280.X
[3] 陈建新; 王彩; 韩健, 一种带有席夫碱结构改性聚天冬氨酸的合成方法及应用, 2020.4.14, 中国, ZL 201810492296.1
[4] 李积慧;李文闻;陈建新, MIL-101(Cr)-Cl2金属有机框架材料及其制备方法及其应用,中国发明专利,2023-04-14,中国, CN 202310042994.2
[5] 陈建新; 董志鹏; 韩健; 苏敏; 李银辉; 卢爱党, 一种阳离子改性γ-聚谷氨酸的合成方法及其应用, 2019.4.12, 中国, ZL 201710052764.9
[6] 李积慧;王万里;姚振铎;陈建新,一种电镀镍溶液中硼酸含量的测定方法,2023-04-18,中国, CN 202310044772.4
[7] 卢爱党;马钰聪;王铁男;李红岩;王兹稳;陈建新, 酰基硫脲结构的pityriacitrin生物碱衍生物及其制备方法和用途,2022-07-12,中国,CN 2021106132112
[8] 卢爱党; 王禄;王铁男;李红岩;王兹稳;陈建新,含酰腙结构的pityriacitrin生物碱衍生物及其制备方法和用途,2022-05-17,中国, CN 202110613197.6
[9] 李银辉; 李坤宇; 陈建新; 苏敏; 卢爱党; 韩健; 林宣伲; 刘旭生, 一种亲水性石墨烯基碳材料及其应用, 2018.9.18, 中国,ZL 201510198481.6
[10] 陈建新; 李志远; 王重斌; 李银辉; 苏敏; 卢爱党; 韩健, 一种聚酰胺/COFs杂化纳滤复合膜及其制备方法, 2017.12.15, 中国, ZL 201610075922.8
[11] 李银辉;陈建新;卢爱党;苏敏;韩健;范榕;张娜,一种吸附水体中重金属离子SiO2/C复合材料及其应用,2017-08-25 , 中国, ZL 201510392166.7
[12] 李银辉;李坤宇;林宣伲;陈建新;韩健;卢爱党;苏敏,一种负载Cu/Cu2O光催化剂的还原氧化石墨烯/无定形碳复合材料及其制备方法和应用,2017-06-16,中国, ZL 201510422986.6
[13] 陈建新;董志鹏;韩健;苏敏;李银辉;卢爱党, 一种阳离子改性γ‑聚谷氨酸的合成方法及其应用,2017-05-10,中国, ZL 201710052764.9
[14] 卢爱党;王兴波;张娅迪;陈建新;马园园;李玉山;张明晨;陈博洋;薛中华,N‑(1,2‑二苯基‑2‑氨基)‑硫代磷酰胺盐及其应用,2017-05-31,中国, ZL 201510490822.7
[15] 李银辉;和鑫;刘传铭;任艳梅;郝雪梅;曹琪盼;陈建新,一种天然生物质吸附剂及其制备方法及应用,2017-05-31,中国, ZL 201710163291.X
[16] 陈建新;王重斌;李志远;韩健;吴洪,一种结构稳定的高性能氧化石墨烯纳滤复合膜及其制备方法,2017-05-10,中国, CN 201710052752.6
[17] 卢爱党; 陈建新; 韩健; 李银辉; 苏敏; 刘腾蛟, 3 芳基 5 甲基丁内酯化合物用作杀植物病原真菌的方法, 2017.5.3, 中国,ZL 201510509290.7
[18] 卢爱党;张娅迪;马园园;陈建新,含β‑硫代磷酰胺基胺类化合物的应用,2017-05-17,中国, ZL 201510487650.8
[19] 卢爱党; 陈建新; 苏敏; 李银辉; 韩健, 硫脲化合物用于抗烟草花叶病毒活性的方法, 2016.11.16, 中国, ZL 201510013285.7
[20] 李银辉、 李坤宇、 陈建新、 韩健、 苏敏、 卢爱党、 李雷、 李莹, 一种吸附水体中重金属离子的碳材料及其应用,201510389961.0
[21] 苏敏;陈建新;李银辉;卢爱党;韩建,超声波处理脱除卤水中钙的方法,2016-09-21,中国, CN 201610494913.2
[22] 卢爱党; 陈建新; 韩健; 李银辉; 苏敏; 刘腾蛟, 3-芳基-5-甲基丁内酯化合物用作抗植物病毒剂的方法, 2016.1.20, 中国, ZL 201410344605.2
[23] 李银辉; 陈建新; 苏敏; 卢爱党; 韩健, 一种碳球CuO核-壳型复合微球及其制备方法和应用, 2015.6.10, 中国, ZL 201310662396.1
[24] 卢爱党; 陈建新; 李银辉; 韩健; 苏敏; 王瑾瑾, 天然产物生物碱Aaptamine的制备方法, 2015.10.7, 中国, ZL 201410323816.8
[25] 李银辉;陈建新;韩健;卢爱党;苏敏,一种亲水性功能碳球及其在去除废水中重金属离子的应用,2015-08-05,中国, ZL 201310661540.X
[26] 陈建新; 袁俊生; 韩健; 李银辉; 卢爱党; 孙权, 有机胺与氯化铵转化分离氯化钾、氯化铵混合物的方法, 2014.2.19, 中国, ZL 201210207196.2
[27] 袁俊生;陈建新;郭小甫;纪志永;谢英惠;邓会宁;苏敏;王军;王阳;刘燕兰;张林栋,用海水制取氯化钾的工艺方法,2010-01-25,中国, ZL 201010031348.9